王世怀
地址:云南省昆明市呈贡区73882必赢欢迎光临网址呈贡校区实训楼2404
E-mail: shihuai.wang@ynu.edu.cn ;
博士,副教授,73882必赢欢迎光临网址“东陆青年学者”引进人才。2019年博士毕业于瑞典乌普萨拉大学(Uppsala University)Ångström实验室—化学系,2019-2021年分别在瑞典乌普萨拉大学和香港大学从事博士后研究。2020年3月获批瑞典Wallenberg博士后基金,于2021-2024在新加坡南洋理工大学物理与数学科学学院担任Wallenberg-NTU博士后研究员。2024年以高层次人才引进加入73882必赢欢迎光临网址。主要研究方向为太阳能燃料和光氧化还原催化的时间分辨光谱研究。近年来在国际著名期刊上发表20余篇研究论文,其中以第一或通讯作者在 JACS, Angew, ACS Catal., ACS Central Sci., Adv. Funct. Mater., Chem. Sci., Chem. Eur. J., 等顶级期刊发表SCI论文12篇。受邀作为Anal. Chem., ACS AMI等期刊审稿人。
教育和工 作经历
2024年6月-今:73882必赢欢迎光临网址,73882必赢欢迎光临网址,副教授
2021年10月-2024年2月:新加坡南洋理工大学,Wallengberg-NTU博士后研究员,合作导师:Prof. Dr. Yanli Zhao
2020年5月-2021年6月:香港大学,理学院化学系,博士后/助理研究员,合作导师:Prof. David Lee Phillips/Prof. Edmund. C.C. Tse
2019年6月-2019年10月:瑞典乌普萨拉大学,Ångström实验室—化学系,博士后,合作导师:Prof. Leif Hammarström/Prof. Reiner Lomoth
2014年10月-2019年5月:瑞典乌普萨拉大学,Ångström实验室—化学系,哲学博士,化学物理专业,指导导师:Prof. Leif Hammarström
研究领域
王世怀博士长期致力于新能源材料开发、能源催化机理(如CO2还原和质子还原产氢)及光氧化还原催化机理研究。通过使用超快光谱、闪光光解、荧光衰减等瞬态光谱技术,探索催化反应的质子耦合电子转移(PCET)过程、催化循环中间体结构、活性位点与化学键断裂、结合之间的构效关系, 旨在推动可再生能源技术和绿色有机合成的发展和进步。
所在课题组已具有完备合成条件的材料合成实验室、光电材料器件制备实验室和一流的性能表征平台(Newport光电转换效率测试系统、Zahner 电化学工作站及阻抗、Zahner 瞬态光强度变化测试系统、BY2000原子力显微镜、Enli发光效率测试系统、爱丁堡稳态/瞬态荧光光谱仪(FLS1000),爱丁堡LP980纳秒瞬态吸收光谱仪,Newport飞秒瞬态吸收光谱仪,多通道光催化反应系统和泊菲莱高气密性自动在线光催化分析系统)。欢迎具有有机合成、共价有机骨架(COFs)材料合成、物理化学、光物理与光化学等相关背景的博士后、博士与硕士研究生加入团队。
科研与教学情况
科研项目:
2025年,国家自然科学基金 (22463012),主持
2024年,73882必赢欢迎光临网址 “东陆青年学者” 人才引进项目,主持
2020年,瑞典Wallenberg博士后科学基金(KAW2019.0562), 主持
获奖及荣誉
2018年, “The 22nd International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-22)” 2018, 英国皇家化学会 “Catalysis Science & Technology” 墙报奖 (Top 3%) 。
2018年,瑞典 “ÅForsk Stiftelsen” 国际会议奖学金。
2018年,瑞典乌普萨拉大学 “Liljewalch” 奖学金。
2017年,瑞典乌普萨拉大学 “Liljewalch” 奖学金。
2017年,瑞典 “Anna Maria Lundins” 奖学金
学术兼职
担任 ACS Applied Materials & Interfaces, Analytical Chemistry等期刊审稿人
主要学术成果 (* 为通讯作者;#为共同一作)
1. Y. Liu, H. Zhao, S. Wang,* R. Niu, S. Bi, W. Han, Y. Wang, S. Song, H. Zhang, and Y. Zhao*, A Wurster-Type Covalent Organic Framework with Internal Electron Transfer-Enhanced Catalytic Capacity for Tumor Therapy. J. Am. Chem. Soc., Accepted, 2024
2. S. Wang, T. Wu, J. Guo, R. Zhao, Y. Hua,* Y. Zhao*. Engineering Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cell. ACS Cent. Sci. 2024, 10, 7, 1383–1395
3. S. Wang, Tai Wu, Shuyang Wu, Jingjing Guo, Ting He, Zhengyang Zhang, Rong Xu, Yong Hua,* Yanli Zhao*. Cobaloxime-Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angew. Chem. Int. Ed. 2023, e202311082, 10.1002/anie.202311082.
4. T. Wu, R. Zhao, J. Qiu, S. Wang*, X. Zhang, and Y. Hua*. Enhancing the Hot Carrier Injection of Perovskite Solar Cells by Incorporating a Molecular Dipole Interlayer. Adv. Funct. Mater. 2022, 32, 2204450
5. S. Wang, T. Wu, J. Qiu, R. Wang, Z. Zhu, X. Zhang* and Y. Hua*. Enhanced electron transfer dynamics in perylenediimide passivated efficient and stable perovskite solar cells. EcoMat 2021, 3, e12146
6. S. Wang, X. Gao, X. Mo, D. Phillips* and E. Tse*, Immobilization of Co-catalyst and Molecular Copper complex on Mesoporous NiO Surfaces for the Enhanced Electrocatalytic Oxygen Reduction. ACS Catalysis 2023, 13, 5599-5608.
7. A. Aster,# S. Wang,# M. Mirmohades, C. Esmieu, G. Berggren, L. Hammarström and R. Lomoth*. Metal vs. ligand protonation and the alleged proton-shuttling role of the azadithiolate ligand in catalytic H2 formation with FeFe hydrogenase model complexes. Chem. Sci. 2019, 10, 5582-5588
8. S. Wang, S. Pullen, V. Weippert, S. Ott, R. Lomoth* and L. Hammarström*. Direct Spectroscopic Detection of Key Intermediates and Turnover Process in Catalytic H2 Formation by a Biomimetic Diiron Catalyst. Chem. Eur. J 2019, 25, 11135-11140
9. S. Wang, A. Aster, M. Mirmohades, R. Lomoth and L. Hammarström*. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Inorg. Chem. 2018, 57, 768-776
10. S. Wang, L. Ding*, Yuan Liu, Yu Fang. Imidazolium-Functionalized Bi-pyrene as Fluorescent Sensor Array and Their Fingerprint Recognition Pattern toward Lanthanide Ions. ACS Appl. Mater. Interfaces 2014, 6, 16156.
11. L. Ding*, S. Wang, Y. Liu, and Y. Fang. Bispyrene/Surfactant Assemblies as Fluorescent Sensor Platform: Detection and Identification of Cu2+ and Co2+ in Aqueous Solution. J. Mater. Chem. A 2013, 1, 8866
12. S. Chen*,# S. Wang,# H. Li and K. Forsberg. Eu3+ doped monetite and its use as fluorescent agent for dental restorations. Ceramics International 2018, 44, 10510
13. T. Liu, R. Tyburski, S. Wang, R. Fernández-Terán, S. Ott, L. Hammarström*. Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free-energy and Pressure Dependent Kinetics. J. Am. Chem. Soc. 2019, 141, 17245–17259
14. T. He, R. Liu, S. Wang, I. K. W. On, Y. Wu, Y. Xing, W. Yuan, J. Guo, Y. L. Zhao, Bottom-up design of photoactive chiral covalent organic frameworks for visible light-driven asymmetric catalysis. J. Am. Chem. Soc. 2023, 145, 18015–18021
15. J. Guo, J. Li, T. Wu, X. Peng, S. Wang, Z. Zhao*, Y. Hua*, B. Tang, and Y. Zhao*. Free Radical-Mediated Intramolecular Photocyclization of AIEgens Based on 2,3-Diphenylbenzo[b]thiophene S,S-Dioxide. J. Am. Chem. Soc. 2023, 145, 7837–7844
16. W. Yang, Y. Liu, T. Edvinsson, A. Castner, S. Wang, S. He, S. Ott, L. Hammarström,* and T. Lian*. Photoinduced Fano Resonances between Quantum Confined Nanocrystals and Adsorbed Molecular Catalysts. Nano Lett. 2021, 21, 5813−5818
17. Y. Hao, W. Yang, M. Karlsson, J. Cong, S. Wang, X. Li, B. Xu, J. Hua, L. Kloo, and G. Boschloo*. ACS Energy Lett. 2018, 3, 1929-1937
18. Y. Cao, L. Ding*, S. Wang, Y. Liu, J. Fan, W. Hu, Y. Fang. Detection and Identification of Cu2+ and Hg2+ based on the Cross-reactive Fluorescence Responses of a Dansyl-Functionalized Film in Different Solvents. ACS Appl. Mater. Interfaces 2014, 6, 49-56